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A History

[ 1948 ] Groundbreaking article by Claude E. Shannon

“A mathematical theory of communication”

introducing the definition of capacity

in communication systems:

The channel capacity is a measurement of the maximum 

amount of information that can be transmitted over a 

channel and received with a negligible probability of error at 

the receiver.

“Information is the resolution of uncertainty.”

- Claude Elwood Shannon
Father of Information Theory SNR1log2  fBC



Page  4 Vladimir Lyashev

PDF: additive noise
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X1 = +1; X2 = -1

Y1 = +1; Y2 = -1

P(X1) = 0.5; P(X2) = 0.5

P(Y1|X1) = 0.451557; P(Y1|X2) = 0.046001)

P(Y2|X1) = 0.046001; P(Y2|X2) = 0.451557)

Error probability: 0.5%
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Signal-to-Noise Ratio
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Detection problem

 32,,2,1 X

X - ?

Search constraint: answer can be YES/NO

Search strategy: bisection method or

interval halving or

binary search or

dichotomy method.

Q#1

Q#2

Q#3

Q#4

Q#5

Ask me…
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Binary channel

Hartley's law: quantity of information M, which is necessary for 

detection the specific value, is the base-2-logarithm of the number of 

distinct messages M that could be sent.

5 answers YES/NO 5 bits of information











222 1loglog


P
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Complex channel model

𝐼 = log2 1 +
𝑔 ⋅ 𝑃

𝜎2
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Basic LOS MIMO channel

If two users j and k are located on 

the same beam then their channel 

vectors are close to collinear
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Multiple Input – Multiple Output Communications

nHxy 
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MIMO model

Page 11
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MIMO model: SU/MU

MU

SU
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SU MIMO

Page 13
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Page 14
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Interference between data streams in MIMO

Page 15

One of the key goal in wireless 

communication algorithm design is 

minimize interference:

 Way #1: 𝑇 → 𝑑𝑖𝑎𝑔 𝑚𝑎𝑡𝑟𝑖𝑥
 Way #2: ???

𝑇 = 𝐵 × 𝐻 ×𝑊
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Vector Precoding

The set of equations that describe the MMSE solution for vector precoding are:
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Using SVD, the matrix H can be 

diagonalized by orthogonal matrices 

U and V
H

VΛUH 

Thus,   nVΛUy  x by transmitting Vx x

Instead of x and pre-multiply the receive signal by vector UH, the transformed received 

signal vector becomes:

  nΛnUxVΛUUyUy
V

~~  xH

x

HHH 

In TDD systems, the channel is the same on transmitter and receiver, but it is changing in 

time and robust precoding of the channel is challengeable problem in wireless comm.
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Open Problems in Wireless Communication

MULTI-USERS SYSTEMS

(CDMA, SCMA, MU-MIMO, etc.)

MULTI-ANTENNA SYSTEMS

(massive-MIMO,

cell splitting/antenna selection,

precoding/beamforming)
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MIMO System Evolution

MORE spectrum efficiency → MORE antenna elements
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Capacity of the system and linear space extension

PTX – power of single transmitter;

NTX – number of transmission 

antennas;

Q – covariance matrix of 

transmitted signal.

In current product it is required matrix operations for

NRB (6…110) matrices with size 4x4 … 128x128 per 1ms or less

In future NRB can be extended to 500, and time scale can be reduced 10 times!!!
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What is channel matrix ?
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Spatial Channel Model
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Spatial Channel Model
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Spatial Channel Model
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State-of-the-Art Problem

To solve the matrix equation as detection problem

Maximize Signal-to-Noise Ratio for better performance

User grouping for better throughput
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Detection in Gaussian Noise
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the log-likelihood ratio corresponding 

to y is given by
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Probability error

Furthermore, the threshold 𝜂 = 𝑃(𝑥 = −1)/𝑃(𝑥 = 1) equals 1 and log η = 0. 

Hence, the MAP rule can be expressed as follows:

Choose 𝑥 = 1 𝑖𝑓 𝐿𝐿𝑅(𝑦) >
0. Otherwise, choose 𝑥 = −1.

Using the isotropic property of Gaussian 

noise, we readily find the probability of error:

0
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2
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Remark

MAP detector provides the best performance, but…

…complexity is not suitable for real-time processing!
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MMSE solution

 arg min ( )Tx y x h r

channel estimation is necessary
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Least square channel estimation 
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MMSE solution

We want to improve LS estimation using linear filtration 𝐻𝑚𝑚𝑠𝑒 = 𝑊 ⋅ 𝐻𝑙𝑠
and minimalizing expectation of square error

2
arg min E LS

W

W h Wh  
 

Reasonable question is : why linear filtration is good here?

To answers we need to recall channel model representation in time domain

ℎ 𝑡 = 

𝑖=1

𝐿

𝛿 𝑡 − 𝜏𝑖 ⋅ 𝑎𝑖 → 𝐹𝐹𝑇 → 𝐻 𝑓 = 

𝑖=1

𝐿

𝑎𝑖 ⋅ exp(−𝑗 ⋅ 2𝜋 ⋅ 𝜏𝑖 ⋅ 𝑓 )

𝐿 −maximal number of channel delays (taps). We see that frequency representation consists of sum of complex exponents 

(harmonics). In theory multiple harmonic estimation is non-linear problem, however if parameters of system was chosen 

smartly, correlation between neighbor subcarriers (measure of linear dependency) would quite large.

Coherence bandwidth estimation is : 𝐵𝑊𝑐𝑜ℎ ≈
1

𝜏𝑟𝑚𝑠
where 𝜏𝑟𝑚𝑠-root mean spread of channel taps. That is why inside 𝐵𝑊𝑐𝑜ℎ

we could use linear filtration.
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Linear MMSE for ChEst: simple derivation

Assuming that pilot slice that we use inside coherence bandwidth let us solve 

Principle that we use called orthogonalization principle and imply that error of 

estimation is not correlated we observed data – meaning that all linear information is 

absorbed by filtration

𝐄 𝐡 −𝐖 ⋅ 𝐡𝑙𝑠 ⋅ 𝐡𝑙𝑠 = 𝟎
𝐡𝑙𝑠 = 𝐡 + 𝒏

So

𝐄 𝐡 ⋅ 𝐡𝑙𝑠
𝐻 −𝐖 ⋅ 𝐄 𝐡𝑙𝑠 ⋅ 𝐡𝑙𝑠

𝐻 = 𝟎

𝐖 = 𝐑ℎ⋅ℎ𝑙𝑠 ⋅ 𝐑ℎ𝑙𝑠⋅ℎ𝑙𝑠
−1 = 𝐑ℎℎ ⋅ 𝐑ℎℎ + 𝜎𝑛

2 ⋅ 𝐈 −1

We assume here that noise is uncorrelated with channel and equal for all bandwidth  

which is true for thermal noise.

Estimation is ready but require some knowledge of 𝐑ℎℎ -covariance matrix of the 

channel, and also noise variance

2 1arg min , , ,N N N

LS LS

     
 W

W E h Wh h h W
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Where can we obtain matrix 𝐑𝒉𝒉?

𝐑𝒉𝒉

measurements modeling
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Each least squares problem has to be regularized. In the linear case,

we want to solve minimization problem

after regularization

the solution is

Tikhonov Regularization in Inverse Problem

2 2
 Hx y n

 Hx y n

 
1

1

hh

H H H H H



  
    

 R

x H H Γ Γ H y H H I H y

2 2
min  Hx y Γx

How to define Tikhonov matrix Г ?

 5x
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QR ML Estimator (example)

QR decomposition often used in MIMO systems

Solution:

Assuming H has a rank of r, we have: H = QR,

Where Q is an N×r orthonormal matrix, R is an r×r upper 

triangular matrix.

Since Q is orthonormal, we have:

Can be viewed as an r layer system.
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QR ML vs. Linear Detection

Two-state system {-1; +1}

Linear receiver required:

matrix inversion and matrix product

(depends of antenna number)

CPLX: (N3+N2)  MUL

ML receiver required:

matrix product times 2N

CPLX: 2NN2 MUL

CPLX*: 2NΣn MUL

For system 4x4

 Linear: 80 MUL

 ML: 256 MUL

 ML-QR: 160 MUL (-37.5%)
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SVD
is very important operation !!!
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Principle of Biorthogonality

H UΛV

i i iHv vH H
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Resume

Typical size of the matrix is less 64×64 elements. For such matrix we need 

fast algorithms for

 eigenvector decomposition;

 matrix inversion (current baseline is classical Cholesky decomposition 

algorithm)

The questions are:

1.Can we define some less complexity algorithm for matrix inversion and 

eigenvector calculation than provided baseline algorithms?

2.Do some fast algorithms (approaches) exist in modern linear algebra to 

compute such specific matrices?
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Homework

1. Generate Wishart-matrix Ak with following parameters of distribution:

Sigma =

1.0000    0.1000    0.1000    0.1000

0.1000    1.0000    0.1000    0.1000

0.1000    0.1000    1.0000    0.1000

0.1000    0.1000    0.1000    1.0000

df = 8

2. Set up 2000 samples of equation:

.ˆtosubjectis),,0(

];1,1[,where,

2

2

2  



kkkkk

kkkkkkkk ss

bxApε

pxεbxA

df = 8;

Sigma = 0.1*ones(4) + 0.9*eye(4);

A = wishrnd(Sigma,df)/df



Page  40 Vladimir Lyashev

Homework

3. Solve noisy equation sample by sample and define 

probability of right solution averaged over all samples.

// default vector  Tk 1,1,1,1
4

1p

)(!1
2
kp

4. Repeat item #3 for               - eigenvector of matrix Ak, 

corresponded to the largest singular value.

)1(

kk up 

5. How stochastic information about additive noise 

can be utilized for minimization of error probability?..
kε



Page  41 Vladimir Lyashev

Homework

I. Generate 2000 samples of matrix A and keep in memory for all 

numerical experiments.

II. Set mapping vector p (two ways).

III. Map one-bit symbol (-1/+1) from 1x1 to 4x1:  x = ps.

IV. Compute b = Ax.

V. Add gaussian noise (sigma is variation parameter for analysis):

b’ = b + n.

VI. Solve noise equation: Ax’ = b’, that define x’ as estimation value.

VII. Find a way to define s’ by known p and estimated x’.

VIII. Check: how many s’ = s ?...

Perror = 1 - <right s’> / <number of samples>

IX. Perror can be defined as function of deviation of noise (sigma).

http://lyashev.weebly.com/notes/linear-algebra-issues-in-wireless-communications


