

Vladimir Lyashev

Moscow Research Center [vladimir.lyashev@huawei.com]

Moscow:

- Introduction & Definitions (#1)
- Matrix Algebra in Wireless (#2)
- Home task (#2)

Rome:

- Parse your homework (#3)
- MMSE criteria in wireless (#3)
- Math. & resource allocation (#4)

A History

[1948] Groundbreaking article by Claude E. Shannon

"**A mathematical theory of communication**"

introducing the definition of capacity in communication systems:

> *The channel capacity is a measurement of the maximum amount of information that can be transmitted over a channel and received with a negligible probability of error at the receiver.*

 $\mathbf{C} = B_f \log_2 \left(1 + \text{SNR} \right)$ \cdot Claude Elwood Shannon

"Information is the resolution of uncertainty." - Claude Elwood Shannon

Page 3 Vladimir Lyashev

PDF: additive noise

$$
H(Y) = -\sum_{n} P(Y_{n}) \log_{2} P(Y_{n})
$$

$$
H(Y | X) = -\sum_{k} P(X_{k}) \sum_{n} P(Y_{n} | X_{k}) \log_{2} P(Y_{n} | X_{k})
$$

Page 4 Vladimir Lyashev

Signal-to-Noise Ratio

Page 5 Vladimir Lyashev

Detection problem

Page 6 Vladimir Lyashev

5 answers YES/NO 5 bits of information

$$
I = \log_2 M = \log_2 \left(1 + \frac{P}{\sigma^2} \right)
$$

Hartley's law: quantity of information *M*, which is necessary for detection the specific value, is the base-2-logarithm of the number of distinct messages *M* that could be sent.

$$
C_{SISO}=B_f\log_2\left(1+\frac{P_{TX}\|\mathbf{H}\|}{\sigma_n^2}\right)=B_f\log_2\left(1+\frac{P_{TX}\lambda_1^2}{\sigma_n^2}\right)
$$

Ideal complex channel model

Consider two antennas A and B. Tx-signal is x ; Rx-signal is y Channel $(Tx = A) \rightarrow (Rx = B)$: $y = hx$; $h = \sqrt{g}e^{i\varphi}$

$$
Channel(Tx = B) \rightarrow (Rx = A): \quad y = h^*x \, ; \, h^* = \sqrt{g}e^{-i\varphi}
$$

Transmitted and received power are connected as follows

$$
p(y) = y^*y = h^*h \cdot x^*x = h^*h \cdot p(x) = g \cdot p(x)
$$

g is power loss on the path $Tx \rightarrow Rx$ φ is phase shift on the path Tx \rightarrow Rx

$$
I = \log_2\left(1 + \frac{g \cdot P}{\sigma^2}\right)
$$

Basic LOS MIMO channel

If two users *j* and *k* are located on the same beam then their channel vectors are close to collinear

Page 9 Vladimir Lyashev

Multiple Input – Multiple Output Communications

MIMO model

MIMO model

There are transmission on the same time-frequency resource

- $N_{\rm x}$ Tx-antennas
- N_Y Rx-antennas
- Data streams $N \leq \text{rank}(H)$ N

MIMO maps $S \rightarrow (X = WS) \rightarrow (Y = HWS) \rightarrow Z = BHWS = TS$

We target to minimize the interference between data streams. Zero interference means that vectors of Cartesian basis in S -space are eigenvectors of T , eigenvalues are real positive

 $Z^{j} = TS^{j} = \lambda_{j}S^{j}$; $\lambda_{j} > 0$; $S^{j} = (0 ... 0, 1, 0 ... 0)^{T}$: component # j is 1

Thus desired form of T is diagonal matrix.

Page 11 Vladimir Lyashev

MIMO model: SU/MU

Page 12 Vladimir Lyashev

SU MIMO

Page 13 Vladimir Lyashev

Page 14 Vladimir Lyashev

Interference between data streams in MIMO

Interference between data streams in MIMO

Theoretically, signals in output data streams are free of interference

$$
S = \sum_{j=1}^N s_j^j S^j \ \to \ Z = \sum_{j=1}^N s_j^j Z^j \ ; \ Z^j = T S^j = \lambda_j S^j
$$

In practice, matrix T can be not strictly diagonal and interference can occur

$$
Z^j \;=\; \lambda_j S^j \;\;\rightarrow\;\; Z^j \;=\; TS^j \;=\; \left(z_1^j, z_2^j \;...\; \right)^T \;=\; \left(t_{1j}, t_{2j} \;...\; \right)^T; \; T \;=\; \left\{t_{kj}\right\}; \; \mathcal{T} \;=\; \left\{t_{kj}\right\}
$$

In this case, SIR for data stream # j can be computed as follows

$$
\begin{aligned}\n\left| \text{SIR}^{j} = \left(s_{j}^{j} z_{j}^{j} \right)^{*} s_{j}^{j} z_{j}^{j} / \sum_{k=1...n} \left(s_{k}^{k} z_{j}^{k} \right)^{*} s_{k}^{k} z_{j}^{k} = \left(s_{j}^{j} \right)^{2} t_{jj}^{*} t_{jj} / \sum_{k=1...n} \left(s_{k}^{k} \right)^{2} t_{jk}^{*} t_{jk} = \\
&= \left(s_{j}^{j} \alpha_{j} \right)^{2} t_{jj}^{*} t_{jj} / \sum_{k=1...n} \left(s_{k}^{k} \alpha_{k} \right)^{2} t_{jk}^{*} t_{jk} = \frac{p_{\text{Tx}}^{j} t_{jj}^{*} t_{jj}}{\left(W S^{j} \right)^{*} W S^{j}} / \sum_{k=1...n} \frac{p_{\text{Tx}}^{k} t_{jk}^{*} t_{jk}}{\left(W S^{k} \right)^{*} W S^{k}}\n\end{aligned} \right.
$$

 $T = B \times H \times W$

One of the key goal in wireless communication algorithm design is minimize interference:

 \triangleq Way #1: $T \rightarrow diag$ matrix

Way #2: ???

Page 15 Vladimir Lyashev

Vector Precoding

The set of equations that describe the MMSE solution for vector precoding are:

 $\left(\mathbf{H}\mathbf{H}^{H}+\mathbf{R}_{_{uu}}\right)^{\!-\!1}\mathbf{y}\!-\!\hat{\mathbf{p}}s\Big\Vert^2$ 2 1 $\argmin \left\| {{{\bf{H}}^H}\left({{\bf{H}}{{\bf{H}}^H} + {{\bf{R}}_{uu}}} \right){^ \mathrm{\cdot }}{\bf{y}} - {{\bf{\hat p}}}s} \right\|$ Set $\mathbf{x} = \mathbf{p}s$ that *H H p* $\mathbf{p} = \arg \min \left\| \mathbf{H}^H \left(\mathbf{H} \mathbf{H}^H + \mathbf{R}_{uu} \right)^{-1} \mathbf{y} - \hat{\mathbf{p}} \right\|$ $\mathbf{y} = \mathbf{H}\mathbf{x} + \mathbf{n}$ Using SVD, the matrix **H** can be diagonalized by orthogonal matrices **U** and **V** $\mathbf{H} = \mathbf{U} \!\times\! \mathbf{\Lambda} \!\times\! \mathbf{V}^H$ $\mathbf{y} = [\mathbf{U} \!\times\! \mathbf{\Lambda} \!\times\! \mathbf{V}] \! x \! +\! \mathbf{n}$ by transmitting **x** $\dot{x} = xV$

Instead of **x** and pre-multiply the receive signal by vector **U**^H, the transformed received signal vector becomes:

$$
\widetilde{\mathbf{y}} = \mathbf{U}^H \mathbf{y} = \mathbf{U}^H \left[\mathbf{U} \times \mathbf{\Lambda} \times \mathbf{V}^H \right]_{\underset{x\widetilde{\mathbf{V}}}{\widetilde{\mathbf{v}}}} \dot{\mathbf{x}} + \mathbf{U}^H \mathbf{n} = \mathbf{\Lambda} x + \widetilde{\mathbf{n}}
$$

In TDD systems, the channel is the same on transmitter and receiver, but it is changing in time and robust precoding of the channel is challengeable problem in wireless comm.

Page 16 Vladimir Lyashev

Open Problems in Wireless Communication

MULTI-USERS SYSTEMS

(CDMA, SCMA, MU-MIMO, etc.)

MULTI-ANTENNA SYSTEMS

(massive-MIMO,

cell splitting/antenna selection,

precoding/beamforming)

MIMO System Evolution

MORE spectrum efficiency → MORE antenna elements

Page 18 Vladimir Lyashev

Capacity of the system and linear space extension

$$
C_{SISO} = B_f \log_2 \left(1 + \frac{P_{TX} \|\mathbf{H}\|}{\sigma_n^2} \right) = B_f \log_2 \left(1 + \frac{P_{TX} \lambda_1^2}{\sigma_n^2} \right)
$$

$$
C_{MIMO} = B_f \log_2 \det(\mathbf{I} + \mathbf{H}\mathbf{Q}\mathbf{H}^H)
$$

Q \ge 0, trace $\mathbf{Q} \le \frac{P_{TX}}{N_{TX}\sigma_n^2}$ P_{TX} - power of single transmitter;
 N_{TX} - number of transmission
antennas;
 $Q = \text{covariance matrix of}$

Q – covariance matrix of transmitted signal.

In current product it is required matrix operations for NRB (6…110) matrices with size 4x4 … 128x128 per 1ms or less In future N_{RR} can be extended to 500, and time scale can be reduced 10 times!!!

Page 19 Vladimir Lyashev

 $\mathbf{H} = \mathbf{U}\mathbf{\Lambda}\mathbf{V}^H \Rightarrow \mathbf{HV} = \mathbf{U}\mathbf{\Lambda} \implies \mathbf{u}_1 = \frac{1}{\lambda_1}\mathbf{H}\mathbf{v}_1 = \frac{1}{\lambda_1}[\mathbf{h}_1 \ \mathbf{h}_2 \dots \mathbf{h}_M]\mathbf{v}_1$ $1 - \frac{1}{2}$ 5.6 $\frac{1}{2}$ \frac

$$
\mathbf{u}_{i} = \frac{1}{\lambda_{i}} \mathbf{R}_{TX}^{1/2} \left[\mathcal{N}^{N \times 1}(0, \mathbf{I}) \ \mathcal{N}^{N \times 1}(0, \mathbf{I}) \ \dots \ \mathcal{N}^{N \times 1}(0, \mathbf{I}) \right] \mathbf{v}_{i} =
$$
\n
$$
= \frac{1}{\lambda_{i}} \mathbf{R}_{TX}^{1/2} \left[v_{i1} \mathcal{N}^{N \times 1}(0, \mathbf{I}) + v_{i2} \mathcal{N}^{N \times 1}(0, \mathbf{I}) + \dots + v_{iM} \mathcal{N}^{N \times 1}(0, \mathbf{I}) \right] =
$$
\n
$$
= \frac{1}{\lambda_{i}} \mathbf{R}_{TX}^{1/2} \mathcal{N}^{N \times 1}(0, \mathbf{I}) = \frac{1}{\lambda_{i}} \mathcal{N}^{N \times 1}(0, \mathbf{R}_{TX}).
$$

Actually, the spatial correlation matrix \mathbf{R}_{TX} is depends of angle of destination (AoD). Thus we can build egenspace matrix $\hat{\mathbf{U}}$ from defined vectors \mathbf{u}_i and correlation matrix $\hat{\mathbf{U}}\hat{\mathbf{U}}^H$, which are similar to Wishart matrices with some constrain on eigenvalues λ_i distribution.

In our assumption, egenvalues can be defined as

$$
\frac{\lambda_2}{\lambda_1} \in [0...0.9]
$$
 and $\frac{\lambda_i}{\lambda_{i-1}}|_{i>2} < \varepsilon$.

Spatial Channel Model

Page 21 Vladimir Lyashev

Spatial Channel Model

Page 22 Vladimir Lyashev

Spatial Channel Model

Page 23 Vladimir Lyashev

Detection in Gaussian Noise

We can obtain a scalar sufficient statistic y (for x on the basis of the observation of r), by projecting **r** on the direction of **h**. Hence, the sufficient statistic y is given by

$$
y = \mathbf{h}^T \mathbf{r} = \mathbf{h}^T \left(\mathbf{v} \sqrt{E_s} x + \mathbf{w} \right) = ||\mathbf{h}||^2 \sqrt{E_s} x + \mathbf{h}^T \mathbf{w} = \sqrt{E_s} x + n
$$

where $n = h^T w \sim \mathcal{N}(0, N_0 / 2)$.

As the probability density function of *y* given *x* is equal to

the log-likelihood ratio corresponding to *y* is given by

$$
f_{Y|X}(y|x) = \frac{1}{\sqrt{\pi N_0}} \exp\left(-\frac{(y-\sqrt{E_s}x)^2}{N_0}\right),
$$

LLR(y) =
$$
\log \frac{f_{Y|X}(y | x = 1)}{f_{Y|X}(y | x = -1)} = \frac{4y\sqrt{E_s}}{N_0}
$$
.

Probability error

Furthermore, the threshold $\eta = P(x = -1)/P(x = 1)$ equals 1 and log $\eta = 0$. Hence, the MAP rule can be expressed as follows:

> Choose $x = 1$ if $LLR(y)$ 0. Otherwise, choose $x = -1$.

Using the isotropic property of Gaussian noise, we readily find the probability of error:

Probability error
Furthermore, the threshold $\eta = P(x = -1)/P(x = 1)$ equals 1 and log $\eta = 0$.
Hence, the MAP rule can be expressed as follows:
Choose $x = 1$ if LLR(y) > 0. Otherwise, choose $x = -1$.
Using the isotropic property of Gaussian noise, we readily find the probability of error:
$P(e) = P(e x = 1) = P(LLR(y) \le 0 x = 1) =$
$= P(y \le 0 x = 1) = P(z + \sqrt{E_s} \le 0) = P(z \ge \sqrt{E_s}) = Q\left(\sqrt{\frac{2E_s}{N_0}}\right)$.

\nFigure 27

\nVladimir Lyashev

MAP detector provides the best performance, but... …complexity is not suitable for real-time processing!

MMSE solution

 $x = \arg \min \left(y - \mathbf{h}_i^T \mathbf{r}(x) \right)$ *channel estimation is necessary*

$$
y = \mathbf{h}^T \mathbf{r} = \mathbf{h}^T \left(\underbrace{\mathbf{v} \sqrt{E_s} x}_{s} + \mathbf{w} \right) = \mathbf{h}^T (\mathbf{s} + \mathbf{w}), \quad \mathbf{h}, \mathbf{r} \in \mathbb{C}^{N \times 1}
$$

Least square channel estimation

$$
h_{LS}^{(i)} = s_P^{(i)} y = h^{(i)} + s_P^{(i)} n,
$$

here $\langle s_P^{(i)}, s_P^{(j)} \rangle = \begin{cases} 1, & \text{for } i = j; \\ 0, & \text{for } i \neq j. \end{cases}$
LS error: $\mathbf{E} \Big[\Big\| h_{LS}^{(i)} - h^{(i)} \Big\|^2 \Big] = \mathbf{E} \Big[\Big\| s_P^{(i)} n \Big\|^2 \Big] = \sigma_n^2$

Page 29 Vladimir Lyashev

We want to improve LS estimation using linear filtration $H_{mmse} = W \cdot H_{ls}$ and minimalizing expectation of square error

$$
W = \underset{W}{\arg \min} \mathbf{E}\Big[\big\|h - W h_{LS}\big\|^2\Big]
$$

Reasonable question is : why linear filtration is good here?

To answers we need to recall channel model representation in time domain

$$
h(t) = \sum_{i=1}^{L} \delta(t - \tau_i) \cdot a_i \rightarrow FFT \rightarrow H(f) = \sum_{i=1}^{L} a_i \cdot \exp(-j \cdot 2\pi \cdot \tau_i \cdot f)
$$

L –maximal number of channel delays (taps). We see that frequency representation consists of sum of complex exponents (harmonics). In theory multiple harmonic estimation is non-linear problem, however if parameters of system was chosen smartly, correlation between neighbor subcarriers (measure of linear dependency) would quite large.

Coherence bandwidth estimation is : $BW_{coh} \approx \frac{1}{\tau}$ $\frac{1}{\tau_{rms}}$ where τ_{rms} -root mean spread of channel taps. That is why inside BW_{coh} we could use linear filtration.

Linear MMSE for ChEst: simple derivation

Assuming that pilot slice that we use inside coherence bandwidth let us solve

$$
\mathbf{W} = \arg\min_{\mathbf{W}} \mathbf{E}\left[\left\|\mathbf{h} - \mathbf{W}\mathbf{h}_{LS}\right\|^2\right], \quad \mathbf{h}, \mathbf{h}_{LS} \in \mathbb{C}^{N \times 1}, \quad \mathbf{W} \in \mathbb{C}^{N \times N}
$$

Principle that we use called orthogonalization principle and imply that error of estimation is not correlated we observed data – meaning that all linear information is absorbed by filtration

$$
\mathbf{E}[(\mathbf{h} - \mathbf{W} \cdot \mathbf{h}_{ls}) \cdot \mathbf{h}_{ls}] = \mathbf{0}
$$

$$
\mathbf{h}_{ls} = \mathbf{h} + \mathbf{n}
$$

So

$$
\mathbf{E}[\mathbf{h} \cdot \mathbf{h}_{ls}^H] - \mathbf{W} \cdot \mathbf{E}[\mathbf{h}_{ls} \cdot \mathbf{h}_{ls}^H] = \mathbf{0}
$$

$$
\mathbf{W} = \mathbf{R}_{h \cdot h_{ls}} \cdot \mathbf{R}_{h_{ls} \cdot h_{ls}}^{-1} = \mathbf{R}_{hh} \cdot (\mathbf{R}_{hh} + \sigma_n^2 \cdot \mathbf{I})^{-1}
$$

We assume here that noise is uncorrelated with channel and equal for all bandwidth which is true for thermal noise.

Estimation is ready but require some knowledge of \mathbf{R}_{hh} -covariance matrix of the channel, and also noise variance

Where can we obtain matrix R_{hh}?

Tikhonov Regularization in Inverse Problem

Each least squares problem has to be regularized. In the linear case,

Page 33 Vladimir Lyashev

QR ML Estimator (example)

QR decomposition often used in MIMO systems

Assuming **H** has a rank of *r*, we have: $H = QR$, Where **Q** is an *N*×*r* orthonormal matrix, **R** is an *r*×*r* upper triangular matrix.

Solution:

Since **Q** is orthonormal, we have: $\left\| -\mathbf{H}\hat{\mathbf{x}}_{_{ML}} \right\|^2 = \left\| \mathbf{y} -\mathbf{Q}\mathbf{R}\hat{\mathbf{x}}_{_{ML}} \right\|^2 = \left\| \mathbf{Q}\! \left(\mathbf{Q}^H \mathbf{y} - \mathbf{R}\hat{\mathbf{x}}_{_{ML}} \right\|^2 = \left\| \mathbf{Q}^H \mathbf{y} - \mathbf{R}\hat{\mathbf{x}}_{_{ML}} \right\|^2 \cong \mathbf{Q}^H$ 2 1 1 0 $(r-1)(r-1)$ 11 $\mathbf{1}(r-1)$ 00 \bullet 01 \bullet 0(r-1) 1 1 0 2 ˆˆˆ0 0 0 0 $\tilde{\texttt{}}$ $\widetilde{}$ $\tilde{\textnormal{\i}}$ ˆ~ $\overline{}$ $\overline{}$ $\overline{}$ $\overline{}$ $\overline{}$ $\bigg)$ \bigwedge I I $\overline{}$ $\overline{}$ $\overline{}$ \setminus $\bigg($ I $\overline{}$ $\overline{}$ $\overline{}$ $\overline{}$ $\overline{}$ \backslash $\overline{}$ $\overline{}$ $\overline{}$ $\overline{}$ $\mathsf I$ \setminus ſ $\overline{}$ $\overline{}$ $\overline{}$ $\overline{}$ $\overline{}$ \int \ I $\overline{}$ $\overline{}$ $\overline{}$ $\overline{}$ \setminus $\bigg($ \cong $\|{\bf v} - {\bf K}{\bf x}\|_w \|=$ Ξ -1 / \sqrt{r} r *r r r ML H ML H* $\mathbf{y} - \mathbf{H}\hat{\mathbf{x}}_{ML} \|^2 = \|\mathbf{y} - \mathbf{Q}\mathbf{R}\hat{\mathbf{x}}_{ML}\|^2 = \|\mathbf{Q}(\mathbf{Q}^H\mathbf{y} - \mathbf{R}\hat{\mathbf{x}}_{ML})\|^2 = \|\mathbf{Q}^H\mathbf{y} - \mathbf{R}\hat{\mathbf{x}}\|^2$ *s s s R R R* R_{∞} R_{∞} \cdots R_{∞} *y y y* . . . : **y Rx**

Can be viewed as an *r* layer system.

QR ML vs. Linear Detection

Page 35 Vladimir Lyashev

SVD is very important operation !!!

rinciple of Biorthogonality

\n
$$
\mathbf{U} = (\mathbf{u}_{1} \quad \mathbf{u}_{2} \quad \dots \quad \mathbf{u}_{N}) \qquad \mathbf{H} = \mathbf{U}\Lambda \mathbf{V} \qquad \mathbf{v} = (\mathbf{v}_{1} \quad \mathbf{v}_{2} \quad \dots \quad \mathbf{v}_{M})
$$
\n
$$
\mathbf{u}_{i}^{H} \mathbf{H} = \mu_{i} \mathbf{u}_{i}^{H} \qquad \qquad \mu_{i} \neq \lambda_{i} \qquad \qquad \mathbf{H}\mathbf{v}_{i} = \lambda_{i} \mathbf{v}_{i}
$$
\nto satisfy biorthogonality principle, we require $\langle \mathbf{x}, \mathbf{y} \rangle = 0$

\n
$$
\mathbf{u}_{i}^{H} \mathbf{H} \mathbf{v}_{j} = \mathbf{u}_{i}^{H} \lambda_{j} \mathbf{v}_{j} = \lambda_{j} \mathbf{u}_{i}^{H} \mathbf{v}_{j} = \lambda_{j} \left\langle \mathbf{u}_{i}, \mathbf{v}_{j} \right\rangle \right\} \qquad \lambda_{j} \left\langle \mathbf{u}_{i}, \mathbf{v}_{j} \right\rangle = \mu_{i} \left\langle \mathbf{u}_{i}, \mathbf{v}_{j} \right\rangle = \sum_{i} \left\langle \mathbf{u}_{i}, \mathbf{v}_{j} \right\rangle = 0.
$$
\nequation

\n**ge** = 37

\nVladimir Lyaşhev

to satisfy biorthogonality principle, we require $\langle x, y \rangle = 0$

Principle of Biorthogonality

\n
$$
\mathbf{U} = (\mathbf{u}_1 \quad \mathbf{u}_2 \quad \dots \quad \mathbf{u}_N) \qquad \mathbf{H} = \mathbf{U}\Lambda \mathbf{V} \qquad \mathbf{v} = (\mathbf{v}_1 \quad \mathbf{v}_2 \quad \dots \quad \mathbf{v}_M)
$$
\n
$$
\mathbf{u}_i^H \mathbf{H} = \mu_i \mathbf{u}_i^H \qquad \qquad \mu_i \neq \lambda_i \qquad \qquad \mathbf{H} \mathbf{v}_i = \lambda_i \mathbf{v}_i
$$
\nto satisfy biorthogonality principle, we require $\langle \mathbf{x}, \mathbf{y} \rangle = 0$ \n
$$
\mathbf{u}_i^H \mathbf{H} \mathbf{v}_j = \mathbf{u}_i^H \lambda_j \mathbf{v}_j = \lambda_j \mathbf{u}_i^H \mathbf{v}_j = \lambda_j \left\langle \mathbf{u}_i, \mathbf{v}_j \right\rangle \qquad \qquad \lambda_j \left\langle \mathbf{u}_i, \mathbf{v}_j \right\rangle = \mu_i \left\langle \mathbf{u}_i, \mathbf{v}_j \right\rangle \qquad \Rightarrow \quad \left\langle \mathbf{u}_i, \mathbf{v}_j \right\rangle = 0.
$$
\n**Page = 37**

\n**Page = 37**

Typical size of the matrix is less 64×64 elements. For such matrix we need fast algorithms for

- \dots **eigenvector decomposition;**
- matrix inversion (current baseline is classical Cholesky decomposition algorithm)

The questions are:

- 1.Can we define some less complexity algorithm for matrix inversion and eigenvector calculation than provided baseline algorithms?
- 2.Do some fast algorithms (approaches) exist in modern linear algebra to compute such specific matrices?

1. Generate Wishart-matrix **A***^k* with following parameters of distribution: Sigma =

 $df = 8$: $Sigma = 0.1*ones(4) + 0.9*eve(4);$ $A = wishrnd(Sigma, df)/df$

 $df = 8$

2. Set up 2000 samples of equation: $(0, \sigma^2)$, \mathbf{p}_k is subject to $\|\mathbf{A}_k\hat{\mathbf{x}}_k - \mathbf{b}_k\|_{2} < \sigma^2$. $A_k \mathbf{x}_k = \mathbf{b}_k + \mathbf{\varepsilon}_k$, where $\mathbf{x}_k = \mathbf{p}_k s_k$, $s_k \in [-1, +1]$; 2 $\mathbf{\varepsilon}_k \in \mathbb{N}(0, \sigma^2)$, \mathbf{p}_k is subject to $\|\mathbf{A}_k\hat{\mathbf{x}}_k - \mathbf{b}_k\|_2 < \sigma^2$

 $A_k \in \mathbb{R}^{4 \times 4}$

Homework

3. Solve noisy equation sample by sample and define probability of right solution averaged over all samples. *l*/ default vector $\mathbf{p}_k = \frac{1}{\sqrt{4}}(1,1,1,1)^T$ $\lambda_k = \frac{1}{\sqrt{4}}(1,1,1,1)$ $\mathbf{p}_k = \frac{-1}{l}$

4. Repeat item #3 for $\mathbf{p}_k = \mathbf{u}_k^{(1)}$ - eigenvector of matrix \mathbf{A}_k , corresponded to the largest singular value.

5. How stochastic information about additive noise $\mathbf{\varepsilon}_{\scriptscriptstyle{k}}$ can be utilized for minimization of error probability?..

 $\left\| \mathbf{p}_{k} \right\|_{2} = 1$ (!)

Homework

http://lyashev.weebly.com/notes/linear-algebra-issues-in-wireless-communications

- I. Generate 2000 samples of matrix **A** and keep in memory for all numerical experiments.
- II. Set mapping vector **p** (two ways).
- III. Map one-bit symbol $(-1/+1)$ from 1x1 to 4x1: $x = ps$.
- IV. Compute $\mathbf{b} = \mathbf{A}\mathbf{x}$.
- V. Add gaussian noise (sigma is variation parameter for analysis): $b' = b + n$
- VI. Solve noise equation: $Ax' = b'$, that define x' as estimation value.
- VII. Find a way to define *s'* by known **p** and estimated **x'**.

VIII. Check: how many *s'* = *s* ?...

Perror = 1 - <right **s'**> / <number of samples>

IX. P_{error} can be defined as function of deviation of noise (sigma).